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Goal : Monolix & Complex models

If one wants to parametrize complex systems like :
• systems with a large number of ODEs
• Partial Differential Equations
• Multi-agent, Multi-physics , etc

following problems arise :
• computational time to obtain the solution of the model for
a given set of parameters is very long ;
• up to now MLXTRAN can not implement these models.

Consequently, parameters estimation of such models
are not doable, in practice.

We here recall existing solution and deliver (with codes avai-
lable online) a generalization allowing to tackle more general
complex problems[1]. This is done by means of coupling of
Monolix with a computationally fast external solvers of the
models.

Existing coupling : Monolix/C++

Monolix allows to implement the model in a “Matlab script”
(see page 19 of [2]). Recall that the goal of this (“main”)
script is to compute, for a given set of parameters, the asso-
ciated solution of the model. Consequently, it is possible :
• to call inside this script a Matlab function (ODE45, ...)
• to call another Matlab (“child”) script implemented by the
user if the model is more complicated and not implementable
with a built-in Matlab function
• to call a true “external” routine, compatible with Matlab ;
for instance a C++ solver, e.g. this was done only for ODEs
in [3]

This kind of approach is only doable in Monolix if associa-
ted solvers give the solution in a small computational time.
In other words, it is limited to ODE or a small number of
ODEs.

For truly complex models mentioned in the introduction
above, a new conceptual breakthrough is needed.

Precomputation–Interpolation

The breakthrough implemented here is a precomputation of
the solution of the complex model (on a discretized grid of
the parameters space) and its storing in a database. Then,
the evaluation of the model is replaced by an interpolation
in the database (instead of a full computation, as above).
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Figure 1. Step – Offline Building of the database (Left) and Step –
SAEM with interpolation (Right).

Step – Offline Building of the database

Homogeneous database

We consider an hypercube Cinit which describes the space
of parameters. Suppose for instance that the model has 3
parameters P1, P2, P3, the hypercube is defined as (Pi ∈
[xmin,i, xmax,i])

Cinit = ΠN
i=1[xmin,i, xmax,i], N = 3 (1)

The database is filled with :
• the coordinates of summits of Cinit

• the solution of the model associated to the summits
Then, Cinit is subdivided in a dyadic way in each direction
(i.e. for each parameter). Every new summit and its associa-
ted solution are then added to the database.

This dyadic subdivision is then repeated iteratively up to a
desired precision. Indeed, the more points there are in the
database, the more precise will be the interpolation. Of note,
this procedure :
• is fully parallelisable
• stores the final database in a ”.mat” binary Matlab format.

Figure 2. Homogeneous (Left) and heterogeneous (Right)
databases.

Heterogeneous database

In order to optimize the storage/computational cost and the
parameter sensitivity, it is natural to improve the previous
procedure by building an heterogeneous database. The idea
is to refine the mesh in zones where the solution varies a lot
with respect to parameters and, on the contrary, to have a
coarser mesh where the sensitivity is low.

This ”heterogeneous” method results in the following gain :
for a given precision, storage/computational cost of the hete-
rogeneous database is much smaller than for an homogeneous
database. This method is also fully parallelisable.

Step – SAEM with interpolation

We are now in position to use Monolix with fast complex
models.
The idea is to adopt aforementioned framework where a
“main” Matlab script is used : this script calls a “child”
Matlab script which does the computation of the solution by
an interpolation in the database :
• search in the database the neighbours surrounding the
“point” to evaluate
• compute the associated interpolation to obtain the solution
of the model.

Examples of such scripts can be found on webpage [4].
Remark : such precomp./interpolation approach is also ap-
plied to a set of 29 ODEs, and presented in this conference :
see [7]. It is a simpler case than the one presented below.

Application : a PDE for invasion

We consider the following general model, the so called KPP
equation [5] :

∂tu−∇.(D∇u) = Ru(1− u), ∀t > 0, ∀x ∈ ∆ (2)

u(0, x) = 1|x−x0|≤ε, with ε fixed. (3)

Parameters : R (reaction coefficient), D (diffusion coeffi-
cient), x0 (localisation of the initial “invaded zone”).
This model can be applied to numerous fields to better un-
derstand propagation phenomena (flame propagation, spe-
cies invasion, tumour growth[6], etc) thanks to the existence
of particular solutions called ”travelling waves”.
The unknown concentration is u(x) ∈ [0; 1] and we are in-
terested in the size of the ”invaded zone” :

S(t) =

∫
∆

u(t, x)dx. (4)

For sake of simplicity, we present the results in the one di-
mensional case (∆ = [0; 1]) but the same approach can be
done with 2D or 3D images (∆ ∈ R

2 or R3, respectively).

Note that the equation is left unchanged if we multiplyD and
R by some constant and divide time by the same constant.
This reduces by one the number of parameters.

We consider a virtual population of solutions of the KPP
equation, assuming Gaussian distributions on its parameters,
and adding noise. We then try to recover the distributions
of the parameters using the approach database/Monolix-
interpolation.
The homogeneous database can be freely downloaded on
webpage [4].
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Figure 3. Left : digital (blue) and estimated (green) population. Right :
inhomogeneous database (x0, w = D/R)
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Figure 4. Monolix output of observed v.s. predicted population and
individual data. Case with no noise (Left) and with 10% noise (Right).

“Exact” case Homog. DB Heterog. DB
Offline cost None 38mn28s 17mn40s
SAEM cost ∼ 23d3h 7mn30s 8mn30s
Total cost ∼ 23d3h 45mn58s 26mn10s

Comparison of the CPU cost of the exact case (with the full EDP
solver), with an homogeneous database and with an heterogeneous

database (with the same precision but less points).

Perspectives

This new method, combining SAEM algorithm and a pre-
computation step, is the first demonstration of parameters
estimation of PDE thanks to a SAEM algorithm in Monolix.
Specifically, we will use it to take into account the strong
spatial behavior of some physical or biological phenomena,
e.g. brain tumor growth as illustrated below. But more gene-
rally, it opens the path to the use of numerous new types of
models and applications in population approaches.

Figure 5. MRI of low grade glioma with strong spatial behavior, for the
same patient at two differents dates : 2007 (Left) and 2008 (Right).
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