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Abstract

We revisit the structure of viscous systems of conservation laws that are entropy-
dissipative. We prove that the dissipated quantities are spatial derivatives of certain
non-linear coordinates that are defined only in terms of the entropy and of the linear,
non-dissipated, coordinates.
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We begin with a first-order system of conservation laws

(1) ∂tu + divf(u) = 0, (x ∈ Rd, u(x, t) ∈ U),

where U is a convex, open subset of Rn. We assume that (1) admits a strongly convex entropy
η of flux Q. Strong convexity just means that D2η(u) is positive definite for every state u ∈ U .

Let ū ∈ U be given. Without loss of generality, we may assume that η reaches its minimum
at ū, up to the replacement of η by

η̂(u) := η(u)− η(ū)− dη(ū)(u− ū).

This assumption allows us to make a priori estimates of weak solutions satisfying the entropy
inequality

∂tu + divQ(u) ≤ 0,

such that u(·, t)− ū is square integrable.
The purpose of this paper is to study viscous extensions of (1) that are compatible with the

entropy, in the sense that there is an entropy inequality for classical solutions of the extended
system. In our weakest setting, such an inequality stands at the level of spatial integrals only.
Somehow, we justify requirements made by Kawashima in his thesis [9], using only natural
assumptions.
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1 What is viscous dissipation

We consider a viscous extension of (1), which has a similar unknown u:

(2) ∂tu + divf(u) = div(B(u)∇u) =
∑
α,β

∂α(Bαβ(u)∂βu).

Multiplication of (2) by dη(u) yields

∂tη(u) + divQ(u) = dη(u)div(B(u)∇u)

= div(dη(u)B(u)∇u)−
∑
α,β

D2η(u)(∂αu, Bαβ(u)∂βu),

where we treat D2η(u) as a symmetric bilinear form. The last term is quadratic in the Jacobian
matrix∇u. We recall that if d = n = 1, this term is simply−b(u)η′′(u)(∂xu)2 and is non-positive
because η is convex and b > 0 (for the Cauchy problem to be well-posed for (2).)

At first glance, we might say that the viscous model is weakly entropy-dissipative if (2)
implies the inequality

∂tη(u) + divQ(u) ≤ div(dη(u)B(u)∇u),

but this definition is a bit too weak for our concern. Such a system could even be entropy-
conservative. This is why the following stronger definition has often be prefered (see for instance
[2, 9]:

Definition 1.1 We say that the viscous model is strongly entropy-dissipative if (2) formally
implies an inequality

(3) ∂tη(u) + divQ(u) + ω
∑

α

∣∣∣∣∣∑
β

Bαβ(u)∂βu

∣∣∣∣∣
2

≤ div(dη(u)B(u)∇u),

where ω = ω(u) is strictly positive and continuous. This amounts to saying that

∑
α,β

D2η(u)(Xα, Bαβ(u)Xβ) ≥ ω
∑

α

∣∣∣∣∣∑
β

Bαβ(u)Xβ

∣∣∣∣∣
2

(4)

=: ω|B(u)X|2, ∀u ∈ U , ∀X1, . . . , Xd ∈ Rn.(5)

Note that the term |B(u)X|2 (the reader is warned that the notation (5) is a little bit
confusing) is the strongest quadratic form that we may expect to control from the left-hand
side of (4), since if it vanishes, then this left-hand side vanishes too.

Definition 1.1 is however a bit too strong, for the following reason. Assume for the moment
that the system (2) be linear, with constant coefficients. In particular, η is quadratic: η(u) =
1
2
uT Su with S ∈ SPDn. What we really wish is that

(6)

∫
Rd

∑
α,β

(S∂αU |Bαβ∂βU) dx ≥ ω

∫
Rd

∑
α

∣∣∣∣∣∑
β

Bαβ∂βU

∣∣∣∣∣
2

dx,
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for every smooth, compactly supported, field U . Although (6) is ensured by (4), we do not
really need the latter. What we need is only (apply Parseval Formula):

(7) (SX|B(ξ)X) ≥ ω
∑

α

|Bα(ξ)X|2 , ∀X ∈ Rn, ∀ξ ∈ Rd,

where we have defined the partial and total symbols

Bα(ξ) :=
∑

β

ξβBαβ, B(ξ) =
∑

α

ξαBα(ξ) :=
∑
α,β

ξαξβBαβ, (ξ ∈ Rd).

At the quasilinear level, we thus have the

Definition 1.2 We say that the viscous model (2) is entropy-dissipative if

(8) D2η(u)(X, B(ξ; u)X) ≥ ω(u)
∑

α

|Bα(ξ; u)X|2 , ∀u ∈ U , ∀ξ ∈ Rd, ∀X ∈ Rn,

where we now take in account the u-dependence of the symbols, and where u 7→ ω(u) is still
continuous and positive.

We notice that this definition might not be accurate enough, in that we wish to have

(9)

∫
Rd

∑
α,β

D2η(U)(∂αU,Bαβ(U)∂βU) dx ≥ ω0

∫
Rd

∑
α

∣∣∣∣∣∑
β

Bαβ(U)∂βU

∣∣∣∣∣
2

dx,

and this might require a special dependence of B as a function of u, while Definition 1.2 affords
only for the ξ-dependence. However we shall be able to derive interesting results from (8) alone.

1.1 The vanishing viscosity limit

To see that (9) is relevant, let us consider the vanishing viscosity limit. We replace B by εB
(ε > 0 a viscosity parameter) in (2):

∂tu
ε + divf(uε) = ε div(B(uε)∇uε) = ε

∑
α,β

∂α(Bαβ(uε)∂βuε).

We thus have, after multiplication by dη(uε),

∂tη(uε) + divQ(uε) = ε div(dη(uε)B(uε)∇uε)− ε
∑
αβ

D2η(uε)(∂αuε, Bαβ(uε)∂βuε).

Let us assume that ∇uε and uε − ū decay fast enough as |x| → +∞, an integration yields

d

dt

∫
Rd

η(uε)dx + ε

∫
Rd

∑
α,β

D2η(uε)(∂αuε, Bαβ(uε)∂βuε) dx ≤ 0.
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Integrating again with respect to time, and using (9), we find

sup
t≥0

∫
Rd

η(uε(x, t))dx ≤
∫

Rd

η(u(x, 0))dx,(10)

εω0

∫ T

0

dt

∫
Rd

∑
α

∣∣∣∣∣∑
β

Bαβ(uε)∂βuε

∣∣∣∣∣
2

dx ≤
∫

Rd

η(u(x, 0))dx.(11)

From these estimates, it follows that uε − ū is bounded in L∞t (L2
x), while ε1/2B(uε)∇uε is

bounded in L2
x,t, independently of ε. The latter point is extremely useful, since it implies that

εB(uε)∇uε tends to zero in L2
x,t as ε → 0+, and therefore the viscous term

ε div(B(uε)∇uε)

tends to zero in the distributional sense. Thus if in addition we are able to pass to the limit
in the nonlinear flux f(uε) (for instance if uε converges almost everywhere1), then we find that
the limit of uε is the solution of (1).

1.2 Range and kernels.

Proposition 1.1 Let the viscous system be entropy-dissipative, in the sense of (8). Then

1. one has

(12) ker B(ξ; u) =
⋂
α

ker Bα(ξ; u), ∀ξ ∈ Rd,

2. the spectrum of the symbol B(ξ; u) is contained in the union of the right half-plane
{z; Re z > 0} and of the origin z = 0,

3. the kernel of B(ξ; u) and its range are orthogonal with respect to the scalar product defined
by D2η(u),

4. the zero eigenvalue is semi-simple (that is, its multiplicity equals the dimension of the
kernel).

Proof

• The first point follows immediately from (8) and the definition of the symbols.

1The convergence almost everywhere is of course a very difficult, largely open, issue. It is the question of
stability, in some appropriate topology where derivatives are under control. What we have discussed so far
is merely the consistency of the vanishing viscosity method. Consistency is the fact that if the approximate
solution converges to something, then the limit is a solution of the limit problem.
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• Decomposing a vector into its real and imaginary parts, we see that we also have

Re D2η(u)(X̄, B(ξ; u)X) ≥ ω
∑

α

|Bα(ξ; u)X|2, ∀X ∈ Cn.

When X is an eigenvector of B(ξ; u), with λ the eigenvalue, there comes

(Reλ)D2η(u)(X̄, X) ≥ ω
∑

α

|Bα(ξ; u)X|2 ≥ 0.

Since D2η > 0n, the factor D2η(u)(X̄, X) is positive. There follows Reλ ≥ 0, with equality
only if Bα(ξ; u)X = 0 for every α, which implies B(ξ; u)X = 0. In this latter case, we
have λ = 0.

• Let Y belong to the kernel, and X be an arbitrary vector. Apply the dissipation (8) to
X + sY . Since we also have Bα(ξ; u)Y = 0 (see the previous point), there remains

D2η(u)(sY + X, B(ξ; u)X) ≥ ω
∑

α

|Bα(ξ; u)X|2.

Since s ∈ R is arbitrary, this implies

D2η(u)(Y,B(ξ; u)X) = 0.

This is the orthogonality of the kernel and the range of B(ξ; u), with respect to the scalar
product induced by D2η(u).

• The orthogonality, plus the fact that D2η(u) is positive definite, imply that the intersection
of the kernel and the range is trivial. Because of dimensionality, this means

Rn = ker B(ξ, u)⊕R(B(ξ; u)).

This exactly tells us that 0 is semi-simple.

In particular, the knowledge of either the kernel or the range determines completely the
other; if one of both is independent of ξ 6= 0, the other one is so, too. Since in practice, the
range of B(ξ; u) does not depend on ξ (Assumption A below), we deduce that the kernel does
not as well. The latter fact was one of Kawashima’s assumptions in his thesis [9]. This fact is
illustrated by the Navier-Stokes system, where the kernel has dimension one (it is the tangent
space to the line {v = cst, θ = cst}) and the null form ` is obviously constant, corresponding to
the conservation of mass. In general, the kernel does depend on u (though not upon ξ, because
of the proposition above), unlike the range.
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2 The nature of dissipated quantities

Physically relevant viscous models not only have a dissipative structure. They also contain a
few first-order conservation laws. This means that there exist linear forms (i.e. coordinates) `,
such that `B(ξ; u) ≡ 0 for every state u and frequency ξ. With a linear change of coordinates,
we may always assume that the p first rows of B(ξ; u) are null, so that the system contains the
conservation laws2

(13) ∂tuj +
∑

α

∂αfα
j (u) = 0, j = 1, . . . p.

A typical illustration is of course the conservation of mass in continuum mechanics, which in
the Navier-Stokes system remains the same as in the Euler system:

∂tρ + div(ρv) = 0 (no right-hand side here; just zero.)

Another one is the conservation of momentum in gas dynamics, if we neglect the Newtonian
viscosity and keep only the thermal diffusion (Fourier–Euler system).

We notice that (13) implies that the ranges of each Bαβ(u), and therefore that of B(ξ; u),
are included in the fixed subspace {0} × Rn−p. In the sequel, we make the rather natural

Assumption A: for every ξ 6= 0, the rank of the symbol B(ξ; u) is precisely n− p.

In other words, the range R(B(ξ; u)) is not only contained in, but is equal to {0} × Rn−p, for
every non-zero frequency ξ. It amounts to saying that B(ξ; u) has a constant range for ξ 6= 0.
We point out that we do not need to consider each Bα(ξ; u) separately.

Remark. Amazingly, we do not need to assume the Onsager relations (micro-reversibility)
Bαβ(u) = Bβα(u)T .

Recall now Proposition 1.1: ker B(ξ; u) is D2η(u)-orthogonal to R(B(ξ; u)). In other words,
when ξ 6= 0, ker B(ξ; u) is defined by the following linear equations

ker B(ξ; u) =

{
z ∈ Rn ;

(
d

∂η

∂uj

)
z = 0, ∀j ≥ p + 1

}
.

Because of (12), we deduce that the kernel of Bα(ξ; u) contains

n⋂
j=p+1

ker d
∂η

∂uj

, .

Let {v1, . . . ,vn} be the dual basis of{
d

∂η

∂u1

, . . . , d
∂η

∂un

}
.

2Of course, system (13) is not closed, since the fluxes also involve the components up+1, . . . , un.
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It is formed of the columns of the matrix D2η∗, with η∗ the Legendre transform of η. In
particular, it depends smoothly on u. Denoting

Y α
j (ξ; u) := Bα(ξ; u)vj,

so that Y α
1 = · · · = Y α

p = 0, we can write

Bα(ξ; u) =
n∑

j=1

Y α
j d

∂η

∂uj

=
n∑

j=p+1

Y α
j d

∂η

∂uj

.

Remarking that

Y α
j (ξ; u) =

d∑
β=1

ξβY αβ
j (u), Y αβ

j := Bαβvj,

we find

Bαβ(u) =
n∑

j=p+1

Y αβ
j d

∂η

∂uj

.

Our first conclusion is that the fluxes B(u)∇u in the second-order terms involve only the
first order derivatives of

∂η

∂up+1

, . . . ,
∂η

∂un

,

namely:

Bαβ∂βu =
n∑

j=p+1

Y αβ
j ∂β

∂η

∂uj

.

We now establish a property of the vectors Y αβ
j (u). To begin with, they belong to R(Bαβ(u))

and therefore their coordinates Y αβ
jk (u) vanish for k ≤ p. Let us next rewrite (8) in terms of

the tensor Y . We shall employ as usual the symbols Y α(ξ; u) and Y (ξ; u), which are n × n
matrices. Their columns are Y α

j and Yj, respectively, while their entries are Y α
ij and Yij. We

point out that, since Y αβ
j belongs to the range of Bαβ, these entries vanish for i = 1, . . . , p : we

may write

Y αβ
j =

(
0

Zαβ
j

)
.

Since the rank of B(ξ) equals n− p, the rank of {Zp+1(ξ), . . . , Zn(ξ)} equals n− p when ξ 6= 0.

Making the linear transformation

X 7→ V := D2η(u)X,

we have
Bα(ξ; u)X =

∑
j≥p+1

vjY
α
j (ξ), B(ξ; u)X =

∑
j≥p+1

vjYj(ξ).
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The dissipative inequality (8) thus writes

V ·
∑

j≥p+1

vjYj(ξ) ≥ ω(u)
∑

α

∣∣∣∣∣ ∑
j≥p+1

vjY
α
j (ξ)

∣∣∣∣∣
2

, ∀V ∈ Rn,

which amounts to

(14)
∑

i,j≥p+1

vivjYij(ξ) ≥ ω(u)
∑

α

∣∣∣∣∣ ∑
j≥p+1

vjZ
α
j (ξ)

∣∣∣∣∣
2

, ∀V ∈ Rn.

When ξ 6= 0, the right-hand side of (14) is a norm for the vector (vp+1, . . . , vn), for if this
quantity vanishes, then so does the linear combination∑

j≥p+1

vjZj(ξ).

Since {Zp+1(ξ), . . . , Zn(ξ)} is a free family, this implies vp+1 = · · · = vn = 0. Whence a positive
number c(ξ; u) such that ∑

i,j≥p+1

vivjYij(ξ) ≥ c(ξ; u)
∑

j≥p+1

v2
j .

By homogeneity of the left-hand side, we deduce that there exists a positive c0(u) such that∑
i,j≥p+1

vivjYij(ξ) ≥ c0(u)|ξ|2
∑

j≥p+1

v2
j .

This is nothing but the Legendre–Hadamard condition for the four-indices tensor Zαβ
ij .

To summarize, we have

Theorem 2.1 Assume that in an entropy-dissipative system (2), the p first rows are first-order
conservation laws,

∂tuj + divfj(u) = 0, j = 1, . . . , p,

while the symbol B(ξ; u) has rank n− p for every non-zero ξ ∈ Rd.
Then the second order part can be rewritten in the form

d∑
α,β=1

n∑
j=p+1

∂α

(
Y αβ

j (u)∂β
∂η

∂uj

)
,

with Y αβ =

(
0

Zαβ

)
satisfying the ellipticity property (Legendre–Hadamard condition)

Z(ξ; u) ≥ c0(u)|ξ|2In−p, (c0(u) > 0).
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Comments.

1. This result tells us that the class of systems of the form

∂tv + divg(v, w) = 0,(15)

∂tw + divh(v, w) =
∑
α,β

∂α(Cαβ∂βw),(16)

is not relevant from a physical point of view, unless the entropy η splits as the sum of
a v-part and a w-part ; in other words, unless dvdwη ≡ 0. For an isentropic flow, the
total energy plays the role of the entropy, and the property above applies in Lagrangian
variables but it does not in Eulerian ones, a rather uncomfortable fact ! For a non-
isentropic flow, the property applies only for an ideal gas (because then the temperature
is a function of the internal specific energy e only), and only in Lagrangian variables ;
real gases or Eulerian variables cannot be handled within the class of systems (15, 16).

2. Let us assume that our system (2) is strongly entropy-dissipative. Then it is entropy-
dissipative and therefore Theorem 2.1 applies. The tensor Z however has the stronger
ellipticity property that

(17)
d∑

α,β=1

∑
i,j≥p+1

FαiFβjZ
αβ
ij ≥ c0(u)‖F‖2, ∀F ∈ Md×(n−p)(R).

In this situation, the dissipation rate takes the form

∑
α,β

D2η(u)(∂αu, Bαβ(u)∂βu) =
d∑

α,β=1

∑
i,j≥p+1

Zαβ
ij ∂α

∂η

∂ui

∂β
∂η

∂uj

≥ c0(u)

∥∥∥∥∇(
∂η

∂up+1

, . . . ,
∂η

∂un

)∥∥∥∥2

.

3. A similar structure occurs in systems of balance laws, called relaxation models. See for
instance [15], where it is taken as a starting point.

3 The reduced hyperbolic system

We now consider the formal limit of the system

∂tu +
∑

α

∂αfα(u) = κ
∑
α,β

∂α(Bαβ(u)∂βu)

when κ → +∞. This limit is related to the time asymptotics t → +∞.
On the one hand, the system being dissipative, we have an estimate∫ +∞

0

∫
R
|B(uκ)∇xu

κ|2dx dt ≤ 1

ω0κ

∫
R

η(uκ
0) dx,
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where the right-hand side tends to zero if the initial data remains bounded. Denoting

z :=

(
∂η

∂up+1

, . . . ,
∂η

∂un

)T

,

this amounts to ∫ +∞

0

∫
R
|Z(uκ)∇xz

κ|2dx dt ≤ 1

ωκ

∫
R

η(uκ
0) dx

κ→+∞−→ 0.

Thus it is likely, at least formally, that the limit u is non-dissipated. Since the first order
operator Z(u)∇x is elliptic, we expect that the limit u takes values3 in a level set {u | z = µ}.

On the other hand, the p first rows of the system do not depend on κ. Thus we expect
that the limit u satisfies them. Finally, our hope is that v := (u1, . . . , up)

T satisfies the closed
system of first-order conservation laws

(18) ∂tv +
∑

α

∂αFα(v; µ) = 0,

where F is defined by Fα
j (v, z) := fα

j (u) when j = 1, . . . , p. This definition turns out to be
meaningful, because of the strong convexity of η : the transformation

u 7→ (v, z)T =

(
u1, . . . , up,

∂η

∂up+1

, . . . ,
∂η

∂un

)T

is a change of variable. Notice that if u′ 6= u, then

〈dη(u′)− dη(u), u′ − u〉 > 0

by strict convexity, and the left-hand side is linear in (v, z). Therefore this strict inequality
does not permit (v, z) = (v′, z′). In other words, the map u 7→ (v, z) is one-to-one.

The above analysis suggests the following

Definition 3.1 System (18) is called the reduced hyperbolic system of the viscous one (2).

This terminology anticipates on the following result, which is due to Boillat & Ruggeri [1].

Theorem 3.1 Let the viscous system (2) be as above: entropy-dissipation, B(ξ; u) having a
constant range as ξ 6= 0.

Then the reduced hyperbolic system admits a strongly convex entropy. In particular, it is
Friedrichs symmetrizable, hence hyperbolic.

Proof
Let us denote

λj :=
∂η

∂uj

3Here, we go a little beyond the claim, by saying that in the limit, the variable z is also time-independent.
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the dual variables. In particular λj = zj for j ≥ p + 1. We shall write θ for (λ1, . . . , λp)
T . The

Legendre–Fenchel transform η∗ of η is a strongly convex function of λ, with

D2
λη
∗ = (D2

uη)−1.

Recall (Godunov [6, 7], Friedrichs & Lax [11]) that we have u = dη∗(λ) and that there exists
smooth functions Mα(λ) such that fα(u) = dMα(λ) (actually, Mα(λ) := fα(u) · λ − Qα(u),
with Q the entropy-flux). Since λ = (θ, z), the reduced hyperbolic system writes

(19) ∂t(dη̂∗(θ)) +
∑

α

∂α(dM̂α(θ)) = 0,

where ĝ(θ) := g(θ, µ). Since the restriction of η∗ to the linear subspace z ≡ µ is a strongly
convex function, we have our Friedrichs symmetrization:

(20) D2
θη̂
∗ ∂tθ +

∑
α

D2
θM̂ ∂αθ = 0.

From (19), we also deduce an additional conservation law

∂t(dη̂∗ · θ − η̂∗) +
∑

α

∂α(dM̂α · θ − M̂α) = 0.

With v = dη̂∗, the expression E := dη̂∗ · θ − η̂∗ is nothing but the Legendre–Fenchel transform
of η̂∗, thus is a strongly convex function of v. This is the entropy of the reduced system.

Practical issues.

• From the proof above, we have

E = dθη
∗ · θ − η∗ = dvη · v − η∗,

which yields the explicit formula

(21) E = η − dwη · w,

where w = (up+1, . . . , un).

• Let us write blockwise the Hessian matrix of η at u = (v, w)T :

D2η(u) =

(
s rT

r σ

)
> 0n,

with s ∈ SPDp. Then the Hessian of the entropy of the reduced system at v, when
dwη = µ is fixed, is given by the Schur complement s− rT σ−1r of σ. It is a classical fact
that since D2η is positive definite, s− rT σ−1r is so.
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The sub-characteristic property. In a hyperbolic first-order system zt + A(z)zx = 0,
infinitesimal disturbances, for instance singularities of derivatives, travel at finite speeds, the
characteristic speeds. These are the eigenvalues a− := a1 ≤ · · · ≤ an =: a+ of A(z) and thus are
functions of the state z. More generally, for a system written in the form A0(z)zt +A(z)zx = 0,
the velocities are the generalized eigenvalues of the pair (A0, A), given by the equation

det(A(z)− aj(z)A0(z)) = 0.

If the system is in symmetric form (A0(z) and A(z) symmetric, with A0(z) positive definite), the
characteristic speeds may be written as Weyl’s infsup formulæ of Rayleigh ratio. In particular

(22) a−(z) = inf
X 6=0

(A(z)X, X)

(A0(z)X, X)
, a+(z) = sup

X 6=0

(A(z)X, X)

(A0(z)X, X)
.

Let us apply this principle to the hyperbolic system (1)

∂tu +
∑

α

∂αfα(u) = 0,

which has the symmetric form

D2
λη
∗ ∂tλ +

∑
α

D2
λM

α ∂αλ = 0,

and to the reduced system (18), in symmetric form (20). One passes from the former to the
latter by replacing a symmetric pair (A0(u), A(ξ; u)) by the pair (S0(u), S(ξ; u)) of upper-left
p × p blocs. In the infsup formulæ, this amounts to restrict to vectors X of the form (Y, 0)T

with Y ∈ Rp. Making this restriction to increase infima and to lower suprema. We therefore
obtain the following result, called sub-characteristic property.

Proposition 3.1 With the same assumptions as above, the characteritic velocities aj(ξ; u) of
(1) and those bj(ξ; u) of the reduced system (18) satisfy the inequalities

aj ≤ bj ≤ aj+n−p, j = 1, . . . , p.

Conclusion. An entropy-dissipative viscous extension of a given hyperbolic system of con-
servation laws is far from being arbitrary, since the dissipation can concern only some very
special quantities. As an example, we take again the gas dynamics. The entropy, in our
mathematical sense, is η = −ρs (s the physical entropy), while the conserved variables are
u = (ρ, m = ρv, ε := 1

2
ρv2 + ρe)T . The above analysis tells us that ∂η/∂ε must be a function

of θ only (since the Fourier–Euler system is dissipative), and that similarly ∂η/∂m must be a
function of (v, θ) only (since the Fourier–Navier-Stokes system is dissipative too). We leave the
reader establishing the identity

θdη =

(
e +

p

ρ
− θs− 1

2
v2

)
dρ + vdm− dε,
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which confirms these assertions. Hint: start from θds = de + pd1
ρ
.

If we start from the Fourier–Euler system (n = 2+d and p = 1+d), the reduced hyperbolic
system is the isothermal Euler system. Proposition 3.1 tells that the sound speed in the
adiabatic system (full Euler equations) dominates that in the isothermal system. We now
calculate the reduced entropy E, constructed in the proof of Theorem 3.1. To do so, we employ
Formula (21),

E = η − ε
∂η

∂ε
= −ρs +

ε

θ

=
1

θ

(
ρe− ρθs +

1

2
ρ|v|2

)
.

We deduce that E is nothing but the mechanical energy, renormalized by the temperature. The
internal energy per unit mass is now

e0(ρ; θ) := e− θs,

also known as the free energy.
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