Publications récentes



Ouvrages


D. S. Systèmes de lois de conservation (2 volumes), Diderot (1996) Paris.
English translation :
Systems of conservation laws, I, Cambridge U. Press (1999), ISBN 0 521 58233 4.
Systems of conservation laws, II, Cambridge U. Press (2000) ISBN 0 521 63330 3.
To order

D. S. Les Matrices : théorie et pratique, Masson (2001) ISBN 2 10 005515 1.

D. S. Matrices : Theory and Applications, Grad. Text in Math. 216, Springer-Verlag (2002) ISBN 0 387 95460 0.
NEW ! The second edition has been released in November 2010.
The material is reorganised. The basics in linear and multilinear algebra are given with more details.
New material includes.
See also the table of contents of the 1st edition,
the solutions of the exercises in pdf (385 K) or in postscript (480 K) formats,
an additional list of 417 exercises (last update July 8th, 2014) in pdf (3.7 MO) format. NEW: file illustrated with 32 stamps from 19 different countries
the list of errata (146 K),
a list of 8 (last update June 9th, 2006) open problems.

S. Friedlander & D. S. Handbook of Mathematical Fluid Dynamics, Elsevier.

Contents of
Volume I (2002, xi + 816 pages, ISBN 0 444 50330 7),
Volume II (2003, xi + 750 pages, ISBN 0 444 51287 X)
Volume III (2004, xi + 674 pages, ISBN 0 444 51556 9).
Volume IV (2007, xi + 711 pages, ISBN 0 444 52834 6).

S. Benzoni-Gavage & D. S. Multi-dimensional hyperbolic partial differential equations. First order systems and applications.
Oxford Mathematical Monographs, Oxford University Press (2007, xxiv + 512 pages, ISBN-10: 0-19-921123-X, ISBN 13: 978-0-19-921123-4). To order.


Articles de revue

(Review articles, often with some original material)

D. S. Systems of conservation laws : A challenge for the XXIst century. Mathematics Unlimited - 2001 and beyond, B. Engquist and W. Schmid eds. Springer-Verlag (2001).

D. S. L1-stability of nonlinear waves in scalar conservation laws. Handbook of Differential Equations. Evolutionary Equations, vol. 1 . Eds: C. Dafermos, E. Feireisl. Elsevier, North-Holland (2004), pp 473-553, ISBN: 0-444-51131-8.

D. S. Discrete shock profiles: Existence and stability. CIME Summer school in Cetraro, 14-21 July, 2003. P. Marcati editor. Lecture Notes in Mathematics # 1911. Springer-Verlag (2007).

D. S. Shock reflection in gas dynamics. Handbook of Mathematical Fluid Dynamics, vol. 4 . Eds: S. Friedlander, D. Serre. Elsevier, North-Holland (2007). See the errata


Articles


D. S. Stabilité des ondes de choc de viscosité qui peuvent être caractéristiques. Nonlinear PDEs and their applications. Collège de France Seminar XIV, D. Cioranescu and J.-L. Lions eds. Studies in Mathematics and its Applications, 31 (2002), Elsevier Sc, pp 647-654.
(Nota: cet article fut transmis à D. Cioranescu en 1994. À cette date, la série n'appartenait pas à Elsevier.)

D. S. Remarks about the discrete profiles of shock waves. Mathemática Contemporânea, 11 (1996) pp 153-170.

D. S. Solutions classiques globales des équations d'Euler pour un fluide parfait compressible. Ann. Inst. Fourier, 47 (1997) pp 139-153.

M. Gisclon & D. S. Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. M2AN, 31 (1997) pp 359-380.

F. Hubert & D. S. Dynamique lente-rapide pour des perturbations de systèmes de lois de conservation, C.R.A.S. 322 (1996) pp 231-236.

F. Hubert & D. S. Fast-slow dynamics for parabolic perturbations of conservation laws. SIAM J. of Appl. Math. 21 (1996) pp 1587-1608.

H. Freistühler & D. S. L1-stability of shock waves in scalar viscous conservation laws. Comm. Pure Appl. Math. 51 (1998) pp 291-301.

Luo Tao & D. S. Linear stability of shock profiles for a rate-type viscoelastic system with relaxation. Quarterly of Appl. Math. LVI (1998) pp 569-586.

D. S. Stabilité L1 pour des lois de conservation scalaires visqueuses. C.R.A.S. 323 (1996) pp 359-363.

M. Bultelle, M. Grassin & D. S. Unstable Godunov discrete profiles for steady shock waves. SIAM J. Num. Anal. 35 (1998) pp 2272-2297.

Ling Hsiao & D. S. Asymptotic behavior of large weak entropy solutions of the damped p-system. J. Partial Diff. Eqs. 10 (1997) pp 355-368.

Ling Hsiao & D. S. Global existence of solutions for the system of compressible adiabatic flow through porous media. SIAM J. Math. Anal. 27 (1996) pp 70--77.

M. Grassin & D. S. Existence de solutions globales et régulières aux équations d'Euler pour un gaz parfait isentropique. C.R.A.S. 325 (1997) pp 721-726.

D. S. Solutions globales (t<0 et t>0) des systèmes paraboliques de lois de conservation. Ann. de l'Institut Fourier 48 (1998) pp 1069-1091.

D. S. Discrete shock profiles and their stability. Hyperbolic problems : Theory, Numerics, Applications. 7th International Conference, Zurich 1998. M. Fey, R. Jeltsch ed. ISNM 130 pp 843-854, Birkäuser (1999).

D. S. (Cet article a reçu le Prix des Annales de l'IHP 2000) Relaxation semi-linéaire et cinétique des systèmes de lois de conservation. Ann. IHP, Anal. non-linéaire, 17 (2000), pp 169-192.

H. Freistühler & D. S. The L1-stability of boundary layers for scalar viscous conservation laws. J. Dynamics and Diff. Eqns., 13 (2001) pp 145-155.

D. S. L1-decay and the stability of shock profiles. PDEs. Theory and numerical solution.Prague, 1998. W. Jäger, J. Necas, O. John, K. Najzar, J. Stará eds. Pitman RNM 406 pp 312-321, Chapman and Hall (1999).

C. Lattanzio & D.S.. Convergence of a relaxation scheme for NxN hyperbolic systems of conservation laws. Numerische Mathematik, 88 (2001) pp 121-134.

C. Lattanzio & D.S.. Shock layers interactions for relaxation approximation to conservation laws. No DEA Nonlinear Diff. Equ. and Appl., 6 (1999) pp 319-340.

D.S.. La croissance de la vorticité dans les écoulements parfaits incompressibles. C. R. A. S., 328 (1999) pp 549-552.

D.S.. La transition vers l'instabilité pour les ondes de choc multi-dimensionnelles. Transactions of the A. M. S., 353 (2001) pp 5071-5093.

K. Zumbrun & D. S.. Viscous and inviscid stability of multidimensional planar shock fronts. Indiana University Math. Journal, 48 (1999) pp 937-992.

D.S.. Stabilité L1 d'ondes progressives de lois de conservation scalaires. Séminaire EDPs de l'Ecole Polytechnique 1998-99.

S. Benzoni-Gavage, D. S. & K. Zumbrun, Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal., 32 (2001), pp 929-962.

D. S. Sur la stabilité des couches limites de viscosité. Ann. de l'Institut Fourier, 51 (2001) pp 109-129.

D. S. Stabilité L1 des chocs et de deux types de profils, pour des lois de conservation scalaires. En consultation.

D. S. & K. Zumbrun, Boundary layer stability in real vanishing viscosity limit. Communications in Math. Physics, 221 (2001) pp 267-292.

S. Benzoni-Gavage, F. Rousset, D. S. & K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary value problems. Proceedings (A) of the Royal Soc. of Edinburgh, 132A (2002) pp 1073-1104.
S. Benzoni-Gavage, F. Rousset, D. S. & K. Zumbrun, Classes persistantes de problèmes mixtes hyperboliques (Résumé en Français du précédent). Colloque Tuniso-Français d'EDPs. La Marsa, 17-22 Avril 2001. Eds B. Dehman, G. Lebeau, C. Zuily. Société Mathématique de Tunisie (2002), pp 155-167.

D. S. Asymptotics of homogeneous oscillations in a compressible viscous fluid. Bol. Soc. Bras. Mat., 32, No 3 (2002), pp 435-442. Numéro spécial en l'honneur de Constantin Dafermos.

M. Hillairet & D. S. Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné. Ann. de l'Inst. Henri Poincaré, Anal. non linéaire, 20 (2003), pp 779-803.

D. S. The stability of constant equilibrium states in relaxation models. Annali dell'Universita' di Ferrara, 48 (2002), pp 253-274.

D. S. L1-Stability of constants in a model for radiating gases. Communications in Math Sciences, 1 (2003) pp 199-207.

S. Benzoni-Gavage, J.-F. Coulombel & D. S. Note on a paper by Robinet, Gressier, Casalis and Moschetta. Journal of Fluid Mechanics, 469 (2002), pp 401-405.

D. S. Hyperbolicity of the non-linear models of Maxwell's equations. Archive for Rational Mechanics and Analysis, 172 (2004), pp 309-331.

D. S. A convex hull arising in the multi-dimensional theory of Born-Infeld electro-magnetic fields. Nonlinear PDEs and Related Analysis (Evanston, 2003) ; G.-Q. Chen, G. Gasper, J. Jerome eds. Contemporary Math. 311, (2005) pp 265-270.

D. S. Spectral stability of periodic solutions of viscous conservation laws: Large wavelength analysis. Communications in PDEs, 30 (2005), pp 259--282.

T. Ruggeri & D. S. Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quarterly of Applied Math., 62 (2004), pp 163-179.

D. S. Systèmes de lois de conservation hyperbolique-elliptique. Voir au format PDF (250 K). With an English abridged version. Article rejeté le 27 septembre 2004.

A. Morando & D. S. A result of L2-well posedness concerning the system of linear elasticity in 2D. Communications in Math. Sc., 3 (2005), pp 317-334.

A. Morando & D. S. On the L2-well posedness of an initial boundary value problem for the 3D linear elasticity. Communications in Math. Sc., 3 (2005), pp 575-586.

D. S. Solvability of hyperbolic IBVPs through filtering. Voir au format PDF. Methods and Applications of Analysis, 12 (2005), pp 253-266. Volume spécial dédié à Joel Smoller.

D. S. Second-order initial-boundary value problems of variational type. Voir en ligne. J. of Functional Analysis, 236 (2006), pp 409-446.

D. Amadori & D. S. Asymptotic behavior of solutions to conservation laws with periodic forcing. J. Hyperbolic Differential Equations, 3 (2006), pp 387-401. Volume spécial dédié à Tai-Ping Liu.

D. S. Second-order initial-boundary value problems of variational type: the incompressible case. Voir au format PDF (260 K). Rendiconti Circ. Mat. Palermo., Serie II, Suppl. 78 (2006), pp 285-312. Volume spécial dédié à Guy Boillat.

D. S. Waves in Systems of Conservation Laws: Large vs Small Scales. Voir au format PDF (274 K). Proceedings of Hyperbolic Problems: Theory, Numerics and Applications, vol. I (Osaka, 2004). Yokohama Publishers (2006), pp 45-56.

C. Lattanzio, C. Mascia & D. S. Shock waves for radiative hyperbolic-elliptic systems. Voir au format PDF. Indiana Univ. Math. J., 56 (2007), pp 2601-2640.

S. Benzoni-Gavage, D. S. & K. Zumbrun, Transition to instability of planar viscous shock fronts: the refined stability condition. Voir au format PDF. J. of Analysis and its applications (ZAA), 27 (2008), pp 381-406.

D. S. Non-linear electromagnetism and special relativity. Voir au format PDF (235 K). Discrete Cont. Dynam. Syst., 23 (2009), pp 435-454.

D. S. Multi-dimensional shock interaction for a Chaplygin gas. Voir au format PDF (350 K). Arch. Rational Mech. Anal., 191 (2009), pp 539-577. Nota: this paper contains a proof of existence and uniqueness of a solution of some degenerate elliptic BVP. Lihe Wang (personal communication, 2011) observed that such solutions describe complete minimal surfaces in the 3D-hyperbolic space. The result is therefore due originally to M. Anderson (Inventiones Math. 1982). The boundary regularity, which I left open, is actually proved by Fang Hua Lin (Inventiones Math. 1989).

D. S. The structure of dissipative viscous system of conservation laws. Physica D293 (2010), pp 1381-1386.

D. S. Local existence for viscous system of conservation laws: Hs-data with s > 1 + d/2. Nonlinear PDEs and Hyperbolic Wave Phenomena. H. Holden, K. Karlsen eds. Contemporary Math. 526 (2010), pp 339-358.

D. S. Weyl and Lidskii inequalities for general hyperbolic polynomials. Chinese Annals of Maths., 30B (2009), DOI 10.1007/s11401-009-0169-3 (207 K).

D. S. Viscous system of conservation laws: Singular limits. IMA volume 153: Nonlinear Conservation Laws and Appl. A. Bressan, G.-Q. Chen, M. Lewicka, D. Wang eds. Springer-Verlag (2010), pp 433-445. Voir au format PDF (191 K).

T. Gallay, D. S. The numerical measure of a complex matrix. Comm. Pure and Appl. Math., 65 (2012), pp 287-336. Voir au format PDF (602 K).

D. S. Irrotational flows for Chaplygin gas. Conical waves. Proceedings of HYP2010 (Beijing, 2010) Li Da-Qian and Song Jiang eds. CAM 17, Higher Education Press (Beijing), pp 102-119. Voir au format PDF (825 K).

D. S. Three-dimensional interaction of shocks in irrotational flows. Confluentes Mathematici, 3 (2011), pp 543-576. Voir au format PDF (626 K).

D. S. Five open problems in compressible mathematical fluid dynamics. Methods and Applications in Analysis, 20 (2013) pp 197-210. Voir au format PDF (178 K).

D. S., H. Freistühler, The hyperbolic/elliptic transition in the multi-dimensional Riemann Problem. Indiana Univ. Math. J. 62 (2013), no 2, pp 465-485. Voir au format PDF (333 K).

D. S., A. Vasseur, L2-type contraction for systems of conservation laws. Journal de l'École polytechnique; Mathématiques 1 (2014) pp 1-28. Voir au format PDF.

D. S. About the Young measures associated with Y. Brenier's ABI model. Journal of Differential Equations, 256 (2014), no 11, pp 3709-3720. Voir au format PDF (178 K).

D. S. Long-time stability in systems of conservation laws, using relative entropy/energy. Submitted. Voir au format PDF (178 K).


Divers


Notes de cours :

D. S.. Interpolation d'opérateurs ; applications. Journal de maths des élèves de l'ENS de Lyon 4 (1998).
D. S. Couches limites non caractéristiques pour les systèmes de lois de conservation ; un guide pour utilisateurs (texte écrit à l'occasion d'un atelier sur les couches limites numériques, tenu à l'IHP en Juin 2001). En consultation.
D. S. Lecture notes (incomplètes) de mon cours de janvier 2007 à S.I.S.S.A., Trieste (Italie) : Systems of conservation laws with dissipation. Voir au format PDF (482 K). Un livre est en préparation.
D. S. Lecture notes de mon cours de juillet 2007 à l'Université Fudan de Shanghai (Chine) : Systems of conservation laws. Theory, Numerical approximation and Discrete shock profiles. Voir au format PDF (343 K). À paraître.
D. S. Shock profiles in the numerical analysis of hyperbolic systems of conservation laws. Transparents d'un cours donné à Prague (EVEQ 2008).

Conférences :

D. S.. Transparents pour mon exposé au Colloque A-HYKE (format pdf).
D. S. L'équation d'Euler des fluides parfaits. Que sait-on ? Que cherche-t-on ? (1.1 MO) Exposé donné au Centre Bernoulli, EPFL, Lausanne (Suisse), le 29 novembre 2007.

Algèbre linéaire :

R. A. Horn, D. Merino and D. S.. The S-orthogonal groups. En préparation.

My site of supplementary exercises about Matrix theory.

Recension :

J. Levelt-Sengers. How fluids unmix. Discoveries by the school of van der Waals and Kamerlingh Onnes.
Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, 2002. Pour Math. Reviews (43 K).

D. S. Who won the 1989 Tour de France ? Girl's Angle Bulletin (June 2011). Voir au format PDF.



Liste restreinte de mes publications les plus significatives :

D. S. Équations de Navier-Stokes stationnaires avec données peu régulières. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), pp 543--559.

D. S. La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations à une dimension d'espace. J. Math. Pures Appl., 65 (1986), pp 423--468.

D. S. Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris SÚr. I Math., 303 (1986), pp 703--706.

D. S. Chute libre d'un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math., 4 (1987), pp 99--110.

D. S. Solutions Ó variations bornées pour certains systèmes hyperboliques de lois de conservation. J. Differential Equations, 68 (1987), pp 137--168.

D. Hoff & D. S. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math., 51 (1991), pp 887--898.

D. S. Variations de grande amplitude pour la densité d'un fluide visqueux compressible. Phys. D, 48 (1991), pp 113--128.

M. Gisclon & D. S. Étude des conditions aux limites pour un système strictement hyberbolique via l'approximation parabolique. C. R. Acad. Sci. Paris SÚr. I Math. 319 (1994), pp 377--382.

D.S. & L. Xiao. Asymptotic behavior of large weak entropy solutions of the damped P-system. J. Partial Differential Equations, 10 (1997), pp 355--368.

H. Freistühler & D. S. L1-stability of shock waves in scalar viscous conservation laws. Comm. Pure Appl. Math., 51 (1998), pp 291--301.

K. Zumbrun & D. S. Viscous and inviscid stability of multidimensional planar shock fronts. Indiana University Math. Journal, 48 (1999) pp 937-992.

D. S. Relaxation semi-linéaire et cinétique des systèmes de lois de conservation. Ann. IHP, Anal. non-linéaire, 17 (2000), pp 169-192.

S. Benzoni-Gavage, D. S. & K. Zumbrun, Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal., 32 (2001), pp 929-962.

D. S. Hyperbolicity of the non-linear models of Maxwell's equations. Archive for Rational Mechanics and Analysis,172 (2004), pp 309-331.

D. S. Spectral stability of periodic solutions of viscous conservation laws: Large wavelength analysis. Communications in PDEs, 30 (2005), pp 259--282.

D. S. Second-order initial-boundary value problems of variational type. J. of Functional Analysis, 236 (2006), pp 409--446.

D. S. Multi-dimensional shock interaction for a Chaplygin gas. Voir au format PDF (350 K). Arch. Rational Mech. Anal., à paraître.